G-protein coupled receptor expression patterns in medulloblastoma subgroups: identifying and exploiting molecular targets
نویسندگان
چکیده
Genome-wide association studies have identified several subgroups of medulloblastoma; however, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Group 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. 1 Chapter II, Section I is published in Acta Nueropathologica Communications with the following citation: Whittier KL, Boese EA, Gibson-Corley KN, Kirby PA, Darbro BW, Qian Q, Ingram WJ, Robertson T, Remke M, Taylor MD, O’Dorisio MS.. “G-protein coupled receptor expression patterns delineate medulloblastoma subgroups.” 2013; Acta Neuropath Comm 1(1):66.
منابع مشابه
G-protein coupled receptor expression patterns delineate medulloblastoma subgroups
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Grou...
متن کاملBiology of Human Tumors Tumor-AssociatedMacrophages in SHHSubgroup of Medulloblastomas
Purpose: Medulloblastoma in children can be categorized into at least four molecular subgroups, offering the potential for targeted therapeutic approaches to reduce treatment-related morbidities. Little is known about the role of tumor microenvironment in medulloblastoma or its contribution to these molecular subgroups. Tumor microenvironment has been shown to be an important source for therape...
متن کاملThe Effect of Aspartate-Lysine-Isoleucine and Aspartate-Arginine-Tyrosine Mutations on the Expression and Activity of Vasopressin V2 Receptor Gene
Background: Vasopressin type 2 receptor (V2R) plays an important role in the water reabsorption in the kidney collecting ducts. V2R is a G protein coupled receptor (GPCR) and the triplet of amino acids aspartate-arginine-histidine (DRH) in this receptor might significantly influence its activity similar to other GPCR. However, the role of this motif has not been fully confirmed. Therefore, the ...
متن کاملTumor-associated macrophages in SHH subgroup of medulloblastomas.
PURPOSE Medulloblastoma in children can be categorized into at least four molecular subgroups, offering the potential for targeted therapeutic approaches to reduce treatment-related morbidities. Little is known about the role of tumor microenvironment in medulloblastoma or its contribution to these molecular subgroups. Tumor microenvironment has been shown to be an important source for therapeu...
متن کاملChanges in regulator of G protein signaling-4 gene expression in the spinal cord of adrenalectomized rats in response to intrathecal morphine
Introduction: Regulators of G-protein signaling protein negatively control G protein -coupled receptor signaling duration by accelerating Gα subunit guanosine triphosphate hydrolysis. Since regulator of G-protein signaling4 has an important role in modulating morphine effects at the cellular level and the exact mechanism(s) of adrenalectomy-induced morphine sensitization have not been fully cl...
متن کامل